资源类型

期刊论文 732

会议视频 40

会议专题 1

年份

2024 2

2023 144

2022 122

2021 95

2020 43

2019 43

2018 34

2017 32

2016 28

2015 25

2014 29

2013 13

2012 28

2011 27

2010 27

2009 18

2008 18

2007 16

2006 3

2005 1

展开 ︾

关键词

碳中和 24

能源 10

二氧化碳 6

低碳经济 6

环境 6

绿色化工 5

膜分离 5

低碳发展 4

低碳 3

天然气 3

CCS 2

产业结构 2

光催化 2

化学吸收 2

化石能源 2

协同效应 2

反渗透 2

固体氧化物燃料电池 2

土地利用变化 2

展开 ︾

检索范围:

排序: 展示方式:

Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy

《化学科学与工程前沿(英文)》   页码 1616-1622 doi: 10.1007/s11705-022-2183-x

摘要: Adsorptive separation of acetylene/carbon dioxide mixtures by porous materials is an important and challenging task due to their similar sizes and physical properties. Here, remarkable acetylene/carbon dioxide separation featuring a high dynamic breakthrough capacity for acetylene (4.3 mmol·g–1) as well as an ultralow acetylene regeneration energy (29.5 kJ·mol–1) was achieved with the novel TiF62–-pillared material ZU-100 (TIFSIX-bpy-Ni). Construction of a pore structure with abundant TiF62– anion sites and pores with appropriate sizes enabled formation of acetylene clusters through hydrogen bonds and intermolecular interactions, which afforded a high acetylene capacity (8.3 mmol·g–1) and high acetylene/carbon dioxide uptake ratio (1.9) at 298 K and 1 bar. Moreover, the NbO52– anion-pillared material ZU-61 investigated for separation of acetylene/carbon dioxide. In addition, breakthrough experiments were also conducted to further confirm the excellent dynamic acetylene/carbon dioxide separation performance of ZU-100.

关键词: adsorption     acetylene/carbon dioxide separation     dynamic capacity     anion-pillared hybrid material    

Application of membrane separation technology in post-combustion carbon dioxide capture process

Mo LI,Xiaobin JIANG,Gaohong HE

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 233-239 doi: 10.1007/s11705-014-1408-z

摘要: Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO separation membrane and the key issue in this area are concluded

关键词: membranes     carbon dioxide capture     separation     polymers     post-combustion    

Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1740-y

摘要:

● MD simulations unveil the transport mechanism for TFP-water mixture through CNTs.

关键词: Fluorinated alcohol     Carbon nanotube     Molecular simulation     Fluorine modified    

Recent advances in antimony removal using carbon-based nanomaterials: A review

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1482-7

摘要:

• The synthesis and physicochemical properties of various CNMs are reviewed.

关键词: Antimony     Carbon nanomaterials     Adsorption     Membrane separation    

Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1630-3

摘要:

● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared.

关键词: Membrane fouling     Wastewater     Membrane separation     Antifouling     Aligned carbon nanotube    

Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas

Maryam Takht Ravanchi, Saeed Sahebdelfar, Farnaz Tahriri Zangeneh

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 173-178 doi: 10.1007/s11705-010-0562-1

摘要: The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest environmental challenge these days. Vast utilization of fossil fuels and forest destruction are main causes of CO increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and utilization or storage of CO , is one way for reduction of its emission, in which the most costly section is separation. Different methods can be used for carbon dioxide separation such as absorption, membrane separation, adsorption and cryogenic distillation. Economic, technical and environmental issues should be considered in selection of the technology for particular application. Carbon dioxide concentration, temperature, pressure and flow rate are influential operating parameters in the selection of the appropriate separation method. Nowadays, absorption is the worldwide industrial separation method. New researches are focused on developing new stable solvents and efficient column configuration with suitable internals to minimize pressure drop. Membrane separation and adsorption (PSA type) are other long-term alternatives that can increase separation efficiency and decrease separation cost. The level of energy consumption in various separation methods are in the order: chemical absorption>physical absorption>membrane separation. Because of high investment costs, current separation technologies are suitable for large concentrated sources. In the present paper, different processes for carbon dioxide separation are investigated and compared. Available technologies and commercial plants for CO sequestration are provided.

关键词: carbon dioxide     greenhouse effect     separation     membrane     absorption     adsorption    

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 305-316 doi: 10.1007/s11705-019-1860-x

摘要: Membrane technology holds great potential in gas separation applications, especially carbon dioxide capture from industrial processes. To achieve this potential, the outputs from global research endeavours into membrane technologies must be trialled in industrial processes, which requires membrane-based pilot plants. These pilot plants are critical to the commercialization of membrane technology, be it as gas separation membranes or membrane gas-solvent contactors, as failure at the pilot plant level may delay the development of the technology for decades. Here, the author reports on his experience of operating membrane-based pilot plants for gas separation and contactor configurations as part of three industrial carbon capture initiatives: the Mulgrave project, H3 project and Vales Point project. Specifically, the challenges of developing and operating membrane pilot plants are presented, as well as the key learnings on how to successfully manage membrane pilot plants to achieve desired performance outcomes. The purpose is to assist membrane technologists in the carbon capture field to achieve successful outcomes for their technology innovations.

关键词: membrane gas separation     membrane contactors     carbon capture     pilot plants     key learnings    

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1668-2

摘要:

● Efficient carbon methanation and nitrogen removal was achieved in AnMBR-PN/A system.

关键词: Anaerobic membrane bioreactor     Partial nitrification/Anammox     Carbon separation     Chemolitrophic nitrogen removal    

Phase separation in cGAS-STING signaling

《医学前沿(英文)》   页码 855-866 doi: 10.1007/s11684-023-1026-6

摘要: Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.

关键词: biomolecular condensates     phase separation     cGAS-STING pathway     cGAS     STING     cGAMP     interferon    

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1895-1912 doi: 10.1007/s11705-023-2355-3

摘要: Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.

关键词: metal organic frameworks     xenon     krypton     selective separation     used nuclear fuel    

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1606-1615 doi: 10.1007/s11705-022-2200-0

摘要: The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil–water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil–water separation performance was as high as 97.8%. After 20 recycle tests, the oil–water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

关键词: oil–water separation     wasted reverse osmosis membrane     hydrophobic modification    

客体溶剂导向策略构筑异构金属有机框架材料实现二氧化碳和甲烷的动力学分离 Article

赖丹, 陈富强, 郭立东, 陈俐吭, 陈洁, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必

《工程(英文)》 2023年 第23卷 第4期   页码 64-72 doi: 10.1016/j.eng.2022.03.022

摘要:

利用吸附分离技术实现二氧化碳和甲烷的分离是提高天然气品质的一种有效手段。然而,基于热力学分离的吸附剂对二氧化碳往往表现出很强的亲和力,因此再生过程会产生巨大的能耗。相较而言,尽管精准调控吸附剂孔径以实现吸附质扩散速率的显著差异仍具有巨大挑战,动力学分离技术仍是变压吸附(PSA)过程的首选。本文报道了一种用于在亚埃尺度精准调控吸附剂孔径的客体溶剂导向策略,实现了二氧化碳和甲烷的高效动力学分离。基于4,4-(六氟异丙基亚甲基)-双(苯甲酸)和双核铜的轮桨型结构单元,我们构筑了一系列异构的金属有机框架材料。结果表明,得益于周期性扩张和收缩的孔道以及理想的孔径尺寸,CuFMOF·CH3OH(CuFMOF-c)能够有效地捕获二氧化碳并阻碍甲烷的扩散,从而表现出优异的动力学分离性能,其具有极高的动力学选择性(273.5)和平衡-动力学综合选择性(64.2)。分子动力学(MD)模拟阐明了分离机制,固定床穿透实验验证了材料优异的分离性能。

关键词: 客体溶剂导向策略     金属有机框架     二氧化碳     甲烷     动力学分离    

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 276-285 doi: 10.1007/s11705-008-0057-5

摘要: The cure-induced phase separation processes of various thermoplastics(TP)-modified thermosetting systems which show upper critical solution temperature (UCST) or lower critical solution temperature (LCST) were studied with emphasis on the temperature dependency of the phase separation time and its potential application in the cure time-temperature processing window. We found that the phase separation time/temperature relationship follows the simple Arrhenius equation. The cure-induced phase separation activation energy (ps) generated from the linear fitting of the Arrhenius equation is irrelevant to the detection means of phase separation time. We also found that (ps) is insensitive to TP content, TP molecular weight and curing rate, but it changes with the cure reaction kinetics and the chemical environment of the systems. With the established phase separation time-temperature dependence relation, we can easily establish the whole cure time-temperature transformation (TTT) diagram with morphology information which is a useful map for the TP/TS composites processing industry.

关键词: separation time-temperature     temperature dependency     cure-induced     separation activation     temperature    

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 775-792 doi: 10.1007/s11705-020-1991-0

摘要: The rapid industrial growth and the necessity of recovering and recycling raw materials increased the interest in the production of highly selective and efficient separation tools. In this perspective, a relevant input was given by the membrane-based technology and the production of imprinted membranes, which possess specific recognition properties at molecular and ionic level, offers the possibility of developing sustainable and green processes. Furthermore, the integration of imprinted membranes with traditional or membrane-based approaches is a promising strategy in the logic of process intensification, which means the combination of different operations in a single apparatus. This work discusses the concept and separation mechanisms of imprinted membranes. Furthermore, it presents an overview of their application in organic solvent nanofiltration, for the removal of toxic agents and recovery solvent, as well as valuable compounds. The recent advances in water treatment, such as pesticide removal and recovery of metal ions, are also discussed. Finally, potential applications of imprinted membranes in hybrid processes are highlighted, and a look into the future of membrane separations for water treatment and recovery of critical raw materials is offered.

关键词: sustainable processes     membrane separation     molecular recognition     imprinted membranes     water treatment    

标题 作者 时间 类型 操作

Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy

期刊论文

Application of membrane separation technology in post-combustion carbon dioxide capture process

Mo LI,Xiaobin JIANG,Gaohong HE

期刊论文

Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular

期刊论文

Recent advances in antimony removal using carbon-based nanomaterials: A review

期刊论文

Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment

期刊论文

Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas

Maryam Takht Ravanchi, Saeed Sahebdelfar, Farnaz Tahriri Zangeneh

期刊论文

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

期刊论文

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox

期刊论文

Phase separation in cGAS-STING signaling

期刊论文

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

期刊论文

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

期刊论文

客体溶剂导向策略构筑异构金属有机框架材料实现二氧化碳和甲烷的动力学分离

赖丹, 陈富强, 郭立东, 陈俐吭, 陈洁, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必

期刊论文

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

期刊论文

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

期刊论文

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

期刊论文